jueves, 5 de marzo de 2009

Presentación

Hola. Pues me han dicho que me encargue de escribir para la sección de ciencia, así que voy a empezar por presentarme un poco.
Actualmente estudio Informática y Matemáticas en la UAM. Llevo algo así como la vida misma cacharreando con ordenadores, más por curiosidad que para sacarle partido realmente, así que antes solía decir que era "informático". Desde que empecé la carrera me he ido metiendo de lleno en esto de las mates, y la verdad es que lo encuentro bastante interesante y satisfactorio. Esto, unido al hecho de que no estoy nada satisfecho con el enfoque que la dan a la informática mis queridos profesores, los cuales ni si quiera saben escribir bien en C, hace que últimamente le diga a todo el mundo que soy "matemático".
Historias de estas a parte, como ven, a lo que me dedico es mayormente tanto a las mates como a la informática, así que, un poco por deformación profesional, principalmente desfilarán por esta sección temas de interés en mates o en informática, quizá haciendo un poco de hincapié en la materia que es común a ambas. Prometo intentar traer también de vez en cuando temas de otras ciencias para que esta sección sea realmente de ciencia.
En mis pocos ratos libres también soy músico (oboista), así que quizá salga alguna vez algún tema que relacione música y matemáticas.
Intentaré darle a esto un enfoque más bien divulgativo, aunque conociéndome sé que alguna vez me pasaré de la raya y me pondré a hablar de cosas que nadie entiende ni a nadie le importan. Dicho todo esto, he considerado que la mejor forma de presentarme de forma "científica" es contándoles a ustedes en qué trabajo actualmente. Este trabajo forma parte de una beca de investigación en matemáticas que realizo en la universidad.
El trabajo es la resolución de un problema en teoría de control. La teoría de control es relativamente nueva y tiene aplicaciones bastante directas en ingeniería. Digo esto último para intentar acabar con el mito de que las matemáticas no sirven para nada y los matemáticos estamos siempre en las nubes.
La cosa esta de la teoría de control va más o menos así. Supongan ustedes que tenemos una cosa a la que llamaremos sistema de control. Esto es básicamente una especie de máquina en la cual hay dos cosas importantes: el estado y la entrada. El clásico ejemplo es el de una planta química donde se fabrica algún producto mediante una reacción. A mí me gustan también el de el sistema de control de estabilidad de un coche o el piloto automático de un avión. Entonces, el estado del sistema en el caso de la planta química podría ser algo así como la presión, temperatura y las concentraciones de los reactivos. En el coche tendríamos la velocidad y dirección, y en el avión la altura, velocidad, orientación y demás.
Este sistema, si nosotros lo dejamos libremente, evoluciona de una forma que normalmente no nos gusta mucho. La planta química podría explotar, el coche se sale por la curva cuando patina, y el avión, bueno, creo que ya saben ustedes todos los posibles desastres. Por eso añadimos al sistema un control. Un control es básicamente una maquinita que actúa sobre el sistema, modificando la evolución natural de éste. En la planta química probablemente se abran y cierren válvulas y demás, y en el coche y el avión, el control actúa sobre los mandos del aparato. El control este es sólo una máquina. Tiene unas entradas, y según las entradas, así controla la evolución del sistema. Lógicamente, tenemos que elegir de una forma inteligente cómo manejamos las entradas si queremos que la cosa funcione. Para eso usamos una función de control, que describe para cada instante qué valores ponemos en las entradas del control.
A la evolución natural del sistema solemos llamarla A, y al control B. El estado se llama x y la función de control u. Entonces, supongamos que tenemos un sistema A con su control B. Lo que queremos hacer ahora es minimizar el coste del control eligiendo adecuadamente la función u. El coste va en el sentido de que yo no quiero que el sistema se desvié demasiado del estado que yo quiero lograr (eso es costoso) y tampoco quiero gastar mucha energía en evitar que se desvíe (eso también es costoso). Así que u tiene que ser pequeña y x tiene que estar cerca de mi estado deseado, el cual solemos decir que es 0 para simplificar las cuentas.
Entonces, la teoría actual me dice que hay una única función u que minimiza el coste, y que esa función u no depende de cualquier cosa, si no que depende únicamente del estado del sistema. La teoría también me dice cómo encuentro en qué forma depende, es decir, cómo es exactamente u. Lo que logro con esto es lo que se llama un sistema de lazo cerrado. En todo momento, el sistema mira su estado actual, y a partir de este calcula qué modificación tiene que imponerse a sí mismo para no desviarse. Así es como se pueden mandar cohetes a Saturno sin que acaben en el Sol. Piensen ustedes que una mínima desviación del camino correcto al principio del viaje se multiplicaría muchísimo según pasa el tiempo. Por eso el sistema tienen que corregir sus propias desviaciones.
Esto está muy bien, y de hecho permite hacer muchas cosas en ingeniería. Pero todavía nos queda una pregunta ¿cómo se diseña esta máquina de control B? Según tengo entendido, esto lo hacen los ingenieros un poco a ojo, utilizando programas con los cuales pueden ver los efectos de modificar B. También hay que tener en cuenta que no todos los controles B posibles que nos imaginemos tienen sentido en la práctica. B representa una máquina que se ha de poder construir luego.
No obstante, esto es a lo que me dedico. Supongamos que todos los B son posibles y yo puedo elegirlos como quiera. Como hemos visto, para cada B hay un coste mínimo que es el que se consigue con el lazo cerrado. Entonces, yo me pregunto: ¿de todos los B cual consigue el menor coste mínimo? Este es el problema, sólo que con una importante restricción. Antes hablé de que B puede tener una o varias entradas. Resulta lógico pensar que cuantas más entradas tenga B, más fácil es controlar el sistema, y así es. En nuestro problemas nos encargamos sólo de los B que tienen una entrada. Son, por así decirlo, las máquinas más simples pero también a las que más les cuesta controlar el sistema.
Pues bueno, esto es a lo que me dedico. Les he mostrado este problema para acabar con dos mitos, el primero es que todo está descubierto en matemáticas. Este problema es sólo una ínfima parte de la investigación actual. Algún día hablaré de los grandes problemas actuales. El segundo es que los matemáticos hacemos cosas o muy absurdas o muy abstractas que no tienen nada que ver con el mundo real. Espero que lo hayan encontrado ustedes interesante.

Firmado: Dani

2 comentarios:

  1. Bueno , solamente escribo, sin ningun tipo de maldad ni mucho menos para decirte Dani, que aver, la gente que se meta en este blog "comunitario" deberia poder decir, voy a ver la seccion de ciencias a ver que han puesto hoy, pero creo que segun has comenzado es dificil que eso pase por el simple hecho de que es complicado entender algo segun lo explicas, no todos somos expertos y creo que deberias contar las cosas o los temas de una forma mas "basica". Espero que no te siente mal porque no es mi objetivo sino todo lo contrario.

    ResponderEliminar
  2. Tu sección me parece bastante interesante y espero que pronto puedas publicar otra entrada, pero también estoy de acuerdo en que es un poco difícil la comprensión según está escrito. Intenta pensar que no todos los lectores tienen la misma formación y los blogs lo que buscan es llegar al máximo número de personas.
    Seguro que las votaciones de mejorable son debidas a ésto, ya que el tema del que hablas me parece bastante atractivo (aunque no se porque mencionas tu vida privada)

    ResponderEliminar